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Abstract. Recently, there has been increased interest in developing
models that can use external knowledge for both vision and natural lan-
guage processing tasks. When faced with complex or unfamiliar scenes,
the network can then retrieve instances that share similar visual concepts
from its external memory and use them to enrich its visual recognition ca-
pabilities. In this work, we leverage the representational power of vision-
language models and the abundance of large-scale data to build a mem-
ory bank for explicit retrieval. In contrast to other external memory de-
signs, we exploit available labels in the form of object/part-segmentation
maps to ensure that the memory stores pertinent granular visual con-
cepts. Moreover, our memory is highly modular and can be easily substi-
tuted depending on the task. We introduce a paradigm to equip networks
with our memory bank for standard image-segmentation tasks including
panoptic, instance, and semantic segmentation. Our results highlight a
remarkable improvement in performance over state-of-the-art architec-
tures on ADE20K, COCO, and Cityscapes.
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1 Introduction

Humans have a remarkable capacity to learn and perceive the visual world
around them. Imagine looking for your keys in a cluttered office space. As you
glance across the room, your eyes might filter for smaller objects that appear
shiny and metallic. But how did your brain know to focus on these character-
istics? Simply, it had seen enough keys to know that they had these attributes
and effortlessly stored that knowledge in memory [26, 46]. This life-long learn-
ing enables humans to build a vast library of visual patterns that can be used
flexibly across various environments and tasks.

Studies in neuroscience have highlighted the role of memory in providing top-
down signals relevant to the given task [11, 13, 18]. More specifically, there has
been a plethora of research indicating that humans rely heavily on contextual
cues for object recognition and localization. Say that we perceive our current
environment to appear similar to a kitchen. Based on our previous experiences,
we would anticipate seeing objects such as utensils or appliances. These expecta-
tions prime our eyes to pay attention to features corresponding to those objects.
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Fig. 1: We present MAPS, our framework for Memory Augmented Panoptic
Segmentation. We incorporate scene level and object level memory to improve per-
formance on downstream tasks. The memory helps introduce more context as well as
diverse instances of related objects coming from similar scenes.

While such feedback is crucial for human visual processing, contemporary
deep networks are limited in harnessing both contextual and object-level infor-
mation to guide information processing. Instead, current models learn to encode
such knowledge directly in their weights via large-scale training [55,58]. Although
this has shown great promise, these models struggle to integrate such informa-
tion to learn more fine-grained relations. Furthermore, updating the model’s
knowledge requires further training or fine-tuning of the model which may not
be computationally feasible for large networks [20,32].

As a result, there has been an increased interest in building retrieval-augmented
methods for various vision tasks [19, 20, 30, 32, 53]. These works propose build-
ing an external database consisting of images and their corresponding captions.
Then during training, the model can find similar images and learn to fuse the
retrieved image and text features generated from a pre-trained vision-language
model. However, such a design is restrictive and cumbersome. Constructing a
large database is challenging and storing it in memory may also be prohibitively
expensive. Additionally, these approaches primarily rely on high-level informa-
tion for retrieving similar examples and may fail to adapt to tasks requiring more
fine-grained knowledge.

In this paper, we present MAPS a framework that enables Memory Augmented
Panoptic Segmentation. Specifically, we propose an alternative paradigm to
build a general-purpose memory bank that is both scalable and modular. Most
notably, we formulate our memory as a two-stage pipeline where our memory
bank stores scene and object-level information. Our motivation behind this de-
sign is that the scene-level information captures the associations between context
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and objects, while the object-level stores structural knowledge about the object.
The combination of both enables our memory to store valuable information
across multiple granularities. Furthermore, we propose using labeled datasets to
generate our memory. With such a strategy, we aim to improve the precision
and robustness of the memory features. It is important to note however that our
framework can easily be extended to weakly-labeled and unlabeled datasets as
well.

Following previous works and to best capitalize on the increasing availability
of multi-modal image-text data, we propose using CLIP [37] to encode image
features for our memory. To demonstrate the effectiveness of our proposed mem-
ory design, we apply it to the task of image segmentation, which is challenging
as it requires the model to both accurately localize and recognize a vast number
of objects. In particular, we describe how to take an existing state-of-the-art seg-
mentation network, namely Mask2Former [6], and augment it with our proposed
memory pipeline. Our results indicate significant and consistent improvement
over challenging baselines on the COCO [29], ADE20K [62] and Cityscapes [9]
datasets for panoptic, instance, and semantic segmentation.

An overview of the full pipeline is shown in Fig. 1 and consists of two steps.
Given a new scene, we first find semantically similar images and retrieve their
global features which encode what objects are in the scene and the relationships
between them. For instance, if the network perceives the scene to be similar to
a bedroom, when it queries the memory, it will retrieve features corresponding
to other bedrooms. In this case, the global representations capture important
contextual information such as the objects in the room (e.g. beds and shelves)
as well as some of the compositional information (e.g. a bed is generally next to
the shelf). We fuse this retrieved knowledge with the network’s current features
using a learnable cross-attention module.

From these same images, we then retrieve more granular information about
the objects in each scene. In the case of the bedroom, our memory can return fea-
ture embeddings corresponding to beds or lamps. On the other hand, if the scene
is similar to a kitchen, the network could obtain features related to appliances
such as a stove or utensils such as forks and knives. These granular features
implicitly encode structural knowledge about each object and can be used to
help the network reinforce or correct its understanding of different objects in
the scene. We again utilize cross-attention to enhance our current features with
these retrieved features. Finally, the enriched features are used to generate the
final segmentation masks.

In summary, our contributions are as follows:

– We propose a new paradigm for constructing and integrating external knowl-
edge via scene-level and object-level memory to incorporate high-level and
fine-grained information respectively. This memory is highly modular and
scales easily with more data.

– We introduce a lightweight pipeline to seamlessly equip state-of-the-art net-
works with our scene-level and object-level memory and demonstrate its
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effectiveness for the Mask2Former architecture, which is an advanced state-
of-the-art segmentation network.

– We find that our proposed memory pipeline significantly improves model
performance on challenging benchmark datasets.

2 Related Works

Context-Based Methods. The role of context plays in understanding the
world around us has been a focus of study in both cognitive neuroscience and
computer vision [14, 18, 39, 40, 59]. Numerous studies in psychology highlight
how the human visual system relies on contextual relationships for detecting
and recognizing objects in various settings [13]. It has been theorized that the
human eye can quickly capture a "scene gist" and use this information in a
top-down manner to retrieve prior knowledge that may be useful for parsing
the scene. This knowledge comes in the form of contextual associations as the
presence of some objects can trigger predictions about other objects that may
be in the scene and thereby impact guesses about what the object is [11,13].

In computer vision, there has been considerable research in trying to harness
contextual information to address various vision problems such as image classifi-
cation [35], object detection [43], crowd counting [41], and scene parsing [12,61].
Early seminal works modeled the contextual associations for object detection via
conditional random fields [36] or modeling feature statistics [45]. [33] proposes
modeling object relationships for scene parsing via an exemplar-based model
where each relationship can be categorized as either a contextual relation or
structural similarity. [35] aims to reconcile compositionality and contextual re-
lationships to build classifiers that can generalize to unseen compositions of seen
concepts. More recently, [31] aims to understand contextual relationships as a
self-supervised learning task and encode this knowledge via a learnable exter-
nal memory module. Our work builds upon this literature as we aim to encode
contextual relationships in our memory for the universal segmentation task.

Retrieval-Augmented Networks. Recently, there has been increased in-
terest in leveraging external knowledge to aid deep networks for a variety of tasks
in both computer vision and natural language processing [30,32,42,47,49,52,53].
The primary goal of these works is to harness the potential of large-scale image-
text or text data to improve the transfer ability of general-purpose models such
as CLIP [37] for specific vision tasks. Our work differs from these approaches in
several key ways. Most notably, these works focus on using external knowledge
to improve contrastive-learning models, while we primarily focus on extending
an existing segmentation network for the universal segmentation task. [49] is
most similar to our work in that they also propose using training data to form
their retrieval knowledge base and demonstrate improved performance when us-
ing task-specific labels. Our goal in this work is to extend this idea to computer
vision and use available labeled data as a way for storing contextual and object-
specific relationships.

Image Segmentation. Image segmentation requires densely labeling every
image pixel. One of the seminal works around this was the Mask R-CNN [16]
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which proposed adding a mask head to the Faster R-CNN [38] style detec-
tion networks for instance segmentation. There have been works built over
this [1, 4, 25, 44] with one of the more recent ones being ViTDet [27] which
replaced the backbone architecture to a state-of-art MAE transformer [10, 15].
For a related and more challenging task of Panoptic Segmentation [24] there have
been works like Panoptic-DeepLab [5], Panoptic-FPN [24] which have proposed
specialized architectures for this task. DETR [2] showcased a new way to do
panoptic segmentation in an end-to-end manner inherently learning proposals
and labels through learnable queries. Deformable-DETR [64] built over a sim-
ilar architecture and made it much more efficient to train while improving the
performance. Both of them relied on the transformer architecture which made
use of self-attention operation. Along similar lines, MaskFormer [7] also does
both semantic as well as panoptic segmentation. Panoptic SegFormer [28] builds
upon Deformable-DETR and introduces a deep supervision strategy to speed up
training and decouples the query between things and stuff for improved perfor-
mance. K-Net [60] furthermore introduces a unified segmentation approach that
excels in the panoptic segmentation task. We build over Mask2Former [6] which
is a popularly used architecture and can perform “universal image segmentation”
which includes panoptic, instance or semantic segmentation.

3 Method

In this section, we introduce some preliminaries and then detail the specifics
of our memory design and construction. We then present a seamless pipeline
to equip the current state-of-the-art Mask2Former network with our proposed
memory retrieval.

3.1 Revisiting Mask2Former

Recently, there has been significant progress made in developing models for
unified image segmentation. Namely, these architectures take inspiration from
DETR and formulate segmentation as a mask classification problem. To this end,
they learn a set of query tokens to capture the things and stuff in the image.
These queries are then used to generate the final set of segmentation masks. This
approach is both simple and effective and many following works have obtained
state-of-the-art results across multiple segmentation and scene-parsing tasks. As
such, we build our framework around this DETR-style architecture and adopt
Mask2Former as our base model.

Here, we spend some time reviewing the key aspects of the Mask2Former ar-
chitecture. Rather than performing a per-pixel classification, Mask2Former and
other similar works learn to predict a set of binary masks and their correspond-
ing class label. To do this, they represent each potential segment as a learnable
feature vector, also known as an object query.

Formally, given an image, a pre-trained backbone network is used to extract
an intermediate feature representation containing high-level semantics. These
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Fig. 2: Overview of MAPS. For a given image during training we encode it using
a frozen CLIP encoder. The extracted embedding is used to query our scene-level
and part-level memory. These memories are also constructed using CLIP embeddings
and encode scene-level as well object-level information. Once the relevant things are
retreived from both memories, a cross attention layer modifies the learnable queries in
the model by interacting with retrieved features. This interaction with memory features
through cross attention helps introduce more context of the scene as well as instance
features coming from diverse instances. Finally, the model predicts segmentations for
the input image using the modified queries.

features are then progressively upsampled via a convolutional pixel decoder net-
work. Simultaneously, a transformer decoder is fed these pixel-level features to
refine the initial set of object query features. This occurs over a series of nine
attention layers. After multiple rounds of self-attention through the transformer
decoder, the final object queries are then used to generate per-object classifi-
cations. These queries are also combined with the final set of pixel features to
generate each of the binary masks for the full panoptic segmentation. To im-
prove the performance, deep supervision is also applied and intermediate masks
are generated at each stage of the pixel-decoder.

In this work, we propose modifying the transformer decoder to use the re-
trieved memory features to refine the object query features. In the following
sections, we detail the design and intuition behind our proposed memory con-
struction as well as the integration strategy used to fuse memory features with
the segmentation model.

3.2 Building a Robust External Memory

Our memory pipeline is composed of two separate memory banks, namely a
scene-level memory and an object-level memory. We formulate our memory as
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Table 1: Panoptic Segmentation results on COCO panoptic val set with 133 cate-
gories.

Method Backbone Params PQ PQth PQst APTh
pan mIOUpan

Panoptic-FPN [23] R101 [17] - 39.0 45.9 28.7 33.3 41.0
Panoptic-DeepLab [5] X71 [8] - 39.7 43.9 33.2 - -
SOLOv2 [50] R50 - 42.1 49.6 30.7 - -
DETR [2] R50 43M 43.4 48.2 36.3 31.1 -
Panoptic FCN [54] R50 37M 43.6 49.3 35.0 - -
K-Net [60] R50 - 47.1 51.7 40.3 - -
CMT-DeepLab [56] R50 - 48.5 - - - -
MaskFormer [7] R50 45M 46.5 51.0 39.8 33.0 57.8
Panoptic-Segformer [28] R50 51M 49.6 54.4 42.4 - -
Mask2Former† [6] R50 44M 51.7 57.6 43.0 41.7 61.0
OneFormer [21] R50 47M 51.5 - - 42.5 61.2

MAPS R50 45.9M 52.0 57.7 43.4 41.7 62.1
† indicates our own training results

a set of key-value pairs and choose CLIP as our feature extractor due to its
ability to extract semantically rich feature representations for both image and
text data. Specifically, we use a pre-trained CLIP-ViT-B model with a patch size
of 16 as our image encoder and freeze it before generating the memory features.

Scene Memory for Context-Object Associations The scene-level memory
bank stores information about what objects make up a particular scene. When
retrieved, this knowledge can be used by the network to refine its current object-
level features. We choose the COCO 2017 [29] training set for our memory due
to its wide variety of scenes and objects as well as its extensive number of
annotations including panoptic segmentation masks.

For a given image, we use the CLS token from our image encoder as the key
to compactly store global “scene gist” information for efficient querying. These
features make up the values for the first stage of our memory as well. Preliminary
experiments demonstrate that the CLS tokens encode relevant information to
retrieve semantically similar scenes and we show some example retrievals in
Figure 3. Given that ViT architectures rely on the CLS token to encode global
representations, we argue that they also effectively store scene-level contextual
information that can then be exploited for the segmentation task.

Incorporating Object-Level Priors The goal of our object-level memory is
to provide the network with more structural knowledge about different objects
such as parts and attributes. We hypothesize that such granular knowledge can
aid the network in discerning more fine-grained nuances between similar objects
and thereby help in the downstream task. Broadly, we encode objects in our
memory as tokens by pooling extracted spatial image features using the provided
segmentation masks. This entails that our extracted features have good spatial
granularity. We discuss how we achieve this below.
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Table 2: Panoptic Segmentation results on ADE20K val set with 150 categories.

Method Backbone PQ PQth PQst APTh
pan mIOUpan

MaskFormer [7] R50 34.7 32.2 39.7 - -
Mask2Former† [6] R50 39.1 39.8 38.7 26.2 45.3
kMaX-DeepLab [57] R50 41.5 - - - 45.0
OneFormer [21] R50 41.9 - - 27.3 47.3

MAPS R50 40.7 40.3 41.5 27.0 47.0
MAPS-Aug R50 41.0 40.3 42.2 27.3 48.6
MAPS-Aug-CLS R50 41.1 40.3 42.8 27.3 48.3

† indicates our own training results

First, similar to the scene-level memory, we extract CLS tokens for each image
and use them as the keys for indexing. However, in this memory, we wish to
store object-level information and thus require extracting dense features. Thus,
directly using the CLIP ViT-B backbone is problematic as its input resolution
is fixed to 224 × 224 and thus the intermediate grid features only have 14 × 14
resolution and therefore lack the necessary spatial granularity to extract robust
object embeddings. The fixed input-size requirement of ViTs is an additional
limitation as the input images must be downsized or cropped before being fed
to the network, resulting in a loss of information.

To overcome this challenge, we follow the protocol proposed by [48] to pro-
duce dense CLIP spatial features. Namely, for any image with resolution H×W ,
we resize the image such that the smaller image dimension is set to 448 and scale
the larger dimension such that it is divisible by the model patch size p. Then a
tiling strategy is applied where the image is split into 224× 224 crops and each
crop is fed to the CLIP image encoder. Overlapping crops are taken as well to
handle the remaining areas and the non-overlapping features are mapped to the
final output feature with a resolution that roughly is H/p × W/p. Please refer
to [48] for more details about the dense extraction strategy. Given this output
feature map and a set of binary masks for each object in the scene, we resize the
features to match the mask resolution and then pool them for each mask giving
us a set of object-level representations.

3.3 Augmenting Mask2Former with Memory

Here, we describe the full procedure for augmenting the Mask2Former model
with our memory pipeline as shown in Fig. 2. In designing this protocol, we aim
to make as few changes as possible to the original architecture to ensure ease
of adoption. Moreover, we take great care to introduce as few parameters as
possible to the architecture and also try to reduce additional memory usage.

We make two modifications to the Mask2Former training pipeline architec-
ture. First, we use a pre-trained CLIP image encoder to generate index features
during the forward pass for each image in the training set. It is important to note
that while the rest of the Mask2Former architecture is learnable, the CLIP en-
coder is frozen during training. This helps us leverage the semantics already cap-
tured by CLIP. Our next change is the addition of a lightweight cross-attention



MAPS: Memory Augmented Panoptic Segmentation 9

layer to transform the learnable object query features using the retrieved CLIP
memory features. This is required to incorporate the knowledge from the mem-
ory into the training. Next, we will delve deeper into the design choices of how
scene-level and object-level memory is retrieved and used to augment the object
query features.

Memory Integration We apply the same protocol for both the scene and
object-level memory. While generating the index features via CLIP is fairly
straightforward, it is not immediately clear how the retrieved features should
be fused with the learnable object queries and how many samples should be
retrieved. Directly using the retrieved features or simply adding them to the
queries may cause the performance to degrade as the object queries need to
learn not only how to recognize an object, but also how to localize it. To this
end, we propose an adaptive fusion mechanism via cross-attention layers to fuse
the query tokens with the retrieved scene features. We place this cross-attention
module within the Transformer decoder block.

Formally, let l represent the current layer index and Xl ∈ RN×C represent
the object queries at the lth layer where N is the number of queries and Mscene ∈
RNretr×C represent the retrieved memory features where Nretr is the number of
retrieved features. We can then compute Ql = fQ(Xl−1) and Kl, Vl ∈ RNretr×C

by applying the functions fK(·) and fV (·) upon Mscene. Here, Ql represents the
query features while Kl and Vl denote the key and value features respectively.
The functions fQ, fK , and fV are implemented as standard linear projection
layers. Then we perform standard cross-attention as shown in Eq. 1.

Xl = softmax(QlK
T
l )Vl +Xl−1 (1)

Such a design enables each query to attend to all retrieved features from the
memory in an efficient manner. Compared to self-attention, this approach only
requires linear runtime complexity and we find that it performs well in multiple
settings.

Finally, when retrieving features from both memory banks, we partition the
Transformer decoder layers into three splits with three layers in each split. The
first split takes advantage of scene-level memory to enhance object-level repre-
sentations using the context features. Then, the second split uses the object-level
memory to focus on fine-grained details and improve the granularity of the object
query representations. Finally, the last split uses standard Mask2Former layers
without any memory. We do this to limit the computational cost of querying
memory and also allow the network to focus on the current input and process
the retrieved knowledge.

4 Experiments

We evaluate our approach on several challenging benchmark datasets to showcase
the efficacy of our proposed memory pipeline and integration strategy. Further-
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Table 3: Panoptic Segmentation results on Cityscapes val set with 19 categories.

Method Backbone Iters PQ PQth PQst APTh
pan mIOUpan

Panoptic-FPN [23] R101 65K 58.1 52.0 62.5 33.0 75.7
Panoptic-DeepLab [5] R50 60K 60.3 - - 32.1 78.7
Mask2Former [6] R50 90K 62.1 - - 37.3 77.5
kMaX-DeepLab [57] R50 60K 64.3 - - 38.5 79.7

Mask2Former† [6] R50 45K 60.5 52.4 66.3 34.0 75.3
MAPS R50 45K 60.7 52.5 66.6 34.6 77.9
MAPS-Aug R50 45K 61.0 52.3 67.3 34.2 78.1
MAPS-Aug-CLS R50 45K 61.0 52.7 67.0 35.6 79.1

† indicates our own training results

more, we perform detailed ablations across multiple datasets and segmentation
tasks.

4.1 Experimental Details

Datasets. We examine the performance of our proposed pipeline using three
popular image-segmentation datasets that are suitable for panoptic, semantic,
and instance segmentation, namely COCO [29], ADE20K [62], and Cityscapes [9].
The COCO dataset consists of 118,000 images for training and 5,000 images for
validation and covers approximately 80 "things" and 53 "stuff" categories. The
ADE20K dataset contains images depicting approximately 100 "things" and 50
"stuff" categories over 20,210 training and 2,000 validation images. Finally, the
Cityscapes dataset covers 19 total categories (11 stuff and 8 things) and has
2,975 images for training with 500 images for validation and 1,525 images for
testing.

Evaluation Metrics. We report the standard evaluation metrics for each
of the image segmentation tasks. Specifically, for panoptic segmentation, we use
the standard Panoptic Quality (PQ) metric [24]. For instance segmentation, we
report the Average precision (AP) metric, and for semantic segmentation, we
report mean Intersection-over-Union (mIOU).

4.2 Implementation Details

Here we detail the specific implementation choices we make for building and re-
trieving from our memory as well as other design choices related to the Mask2Former
model. For the Mask2Former model, all experiments are conducted with the
ResNet-50 [17] backbone.

We construct each memory bank using the FAISS library [22] and use the
Hierarchical Small Navigable Worlds index (HSNW) [34] for fast and efficient
querying of the memory. For both memory banks, we retrieve five samples for
each instance to balance between retrieving diverse samples and computational
cost. For the scene-memory, we apply our cross-attention module for the first
three blocks of the transformer decoder, while for the part-memory, we use the
cross-attention module for the third to sixth blocks of the decoder. To generate
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Table 4: Ablation of extra layers on ADE20K. We demonstrate that our approach
improves upon adding additional layers to Mask2Former.

Method Params PQ AP mIOU

Mask2Former 44M 39.1 26.2 45.3
Mask2Former (6) 45.6 39.8 26.4 46.1
Mask2Former (9) 46.4M 40.6 27.3 46.5

MAPS (6) 45.9M 40.7 27.0 47.0

Table 5: Ablation of augmentation strategies on ADE20K. We demonstrate that
adding augmentations to the cross-attention improves model performance.

Augmentation PQ AP mIOU

None 40.7 27.0 47.0
Swapped 39.6 26.9 46.9
Random-Sampling 40.5 27.2 47.5
Input-Masking 41.3 27.4 47.5
Layer-Masking 40.4 27.4 46.6

the features for querying the memory, we use CLIP-ViT-B/16 as our image
encoder. The rest of the pipeline follows that of Mask2Former and we refer
the reader to [6] for more details about the segmentation architecture and loss
hyperparameters and post-processing.

4.3 Training Settings

We train our model using the Detectron2 [51] library and follow Mask2Former’s
settings for training. Specifically, we use the AdamW optimizer and the same
step-learning scheduler as Mask2Former. Further details about the training pipeline
can be found in [6]. For all experiments, we train our model using panoptic
segmentation labels and follow the respective training recipes for COCO and
Cityscapes. For ADE20K, we observe that a simple change to the learning rate
schedule enables better training convergence. Specifically, we still our network
for 160K iterations, but keep the learning rate the same across training with a
10% drop at the 100K iteration and another 10% drop at the 140K iteration.

4.4 Quantitative Evaluation

We start by benchmarking our approach on the COCO panoptic val set and
show these results in Table 1. It can be seen that our memory augmented ap-
proach outperforms all baselines on all metrics with reduced number of param-
eters and no special tricks used for the segmentation task. Specifically, we per-
form 0.3 points better than Mask2Former and 0.5 points more than OneFormer
which has been trained jointly on panoptic, instance, and segmentation tasks.
Most notably, we achieve the highest mIOU with a 1 point increase compared
to baselines. This highlights that our memory is useful in localizing objects and
generating more precise segmentation masks.
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Table 6: Ablation of Memory Design. Here we delineate all of our memory design
choices including two different backbones to generate the CLS token used for indexing
the memory as well as forming the scene-level memory as well as four dense extraction
strategies to form our object-level memory.

Row CLIP-CLS DINO-CLS CLIP-Image DINO-Image MaskCLIP-Image TiledCLIP-Image PQ AP mIOU

1 ✓ ✗ ✗ ✗ ✗ ✗ 40.3 27.2 47.0
2 ✗ ✓ ✗ ✗ ✗ ✗ 39.7 26.7 46.0
3 ✓ ✗ ✓ ✗ ✗ ✗ 39.6 26.6 45.9
4 ✓ ✗ ✗ ✓ ✗ ✗ 40.0 27.0 46.3
5 ✓ ✗ ✗ ✗ ✓ ✗ 40.1 26.9 46.2
6 ✓ ✗ ✗ ✗ ✗ ✓ 40.7 27.0 47.0

Table 7: Ablation of each component during infer-
ence. Specifically, we turn each component off in the
forward pass.

Row Scene Level Obj. Level PQ AP mIOU

1 ✗ ✗ 33.3 24.4 40.3
2 ✓ ✗ 40.2 26.7 46.7
3 ✗ ✓ 34.1 25.6 41.9
4 ✓ ✓ 40.7 27.0 47.0

Table 8: Ablation on the num-
ber of retrieved samples from
memory.

# Retrievals 1 5 10

PQ 39.7 40.7 40.5
AP 26.7 27.0 27.1
mIOU 46.4 47.0 46.9

We next show results for the ADE20K benchmark where we see similar im-
provements Table 2. Along with our base model using the TiledCLIP strategy,
we also experiment with augmentation strategies to the cross-attention to im-
prove model robustness and also further utilize CLIP knowledge by appending
the current image’s CLIP CLS token to our scene memory. We see that while
our plain MAPS framework does improve upon Mask2Former, adding these extra
components improves our panoptic quality by 0.4 points and improves mIOU by
roughly 1.6 points and outperforming existing state-of-the-art on similar back-
bones.

Finally we observe improved performance on the Cityscapes dataset com-
pared to existing methods Table 3. While only training for 45K iterations, we
observe competitive performance on mIOU where we almost reach state-of-the-
art performance with 79.2%. We also closely match Mask2Former and beat its
results at that iteration number by 0.5 points. Overall, we observe that the seg-
mentation network equipped with memory is better initialized throughout the
training process and consistently has improved performance.

4.5 Ablation Experiments

Next we ablate over the different components of our approach. In Table 4, we
showcase that our model outperforms adding extra self-attention layers to the
Mask2Former backbone by about 1 point in PQ, 0.6 pts in AP and 1 pt in mIOU.
Therefore, we avoid incurring expensive runtime costs as well as additional mem-
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Fig. 3: Examples of image level retrievals from the memory. The first column corre-
sponds to the training image being used to query the memory. The following five rows
corresponds to the retrievals from the memory for the corresponding sample.

ory for computing the attention matrices. This demonstrates that our approach
benefits from the memory and not the negligible increase in parameters.

Next in Table 6, we examine the effect of different backbones for generating
our memory features. Namely, we experiment with CLIP and DINO [3] for gener-
ating the CLS tokens that represent the scene memory and are used for indexing
as well as MaskCLIP [63] and the base CLIP model for obtaining dense features.
We observe that CLIP is best for obtaining global features and that TiledCLIP
with CLIP obtains the best PQ and mIOU with 40.7 and 47.0 respectively.

Next, we consider how augmentation strategies affect the cross-attention uti-
lization. Specifically, we experiment with swapping the scene and object mem-
ory, adding random sampling to sample new retrievals at each iteration, and
random masking of the memory features across the input and layers. The results
are shown in Table 5. It can be seen that adding augmentations can add up
to 0.6 points in performance boosts for PQ and 0.5 points in mIOU, namely
for input-masking. As such, our augmented version relies on random-sampling
and input-masking where the cross-attention is randomly masked once at the
beginning of the forward pass.

Lastly, we consider the number of samples retrieved Table 8 as well as the
individual impact of each memory Table 7. We observe that after 5 samples,
there is minimal improvements and that the scene-level memory enables the
most benefits in performance, while the object-level memory adds about 1 pt in
performance across the board.

4.6 Retrieval Analysis

Here we examine the quality of our retrievals for scene and object-level mem-
ory. Some example scene-level retrievals are shown in Fig. 3. For each row, the
leftmost image corresponds to the current instance that the model is processing
and the right five images are the retrieved samples. We see that the retrieved
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Model 
Queries

Retrieved 
Segment 1

Retrieved 
Segment 5

Retrieved 
Segment 2

Retrieved 
Segment 3

Retrieved 
Segment 4

Fig. 4: Examples of retrieved segment queries for different queries in the transformer.
The first column corresponds to the region corresponding to where the query looks at
in the given image. The following five columns are the regions corresponding to the
retrieved images for highest similarity region retrievals.

samples very closely match the queried image with respect to foreground and
background. We show object-level retrievals in Fig. 4 shows retrieved segments
for a given image query. It can be seen that for query images corresponding to
certain objects like computer it looks at other computer screens. At the same
time to predict a certain segmentation, it looks at context which might corre-
spond to other objects.

5 Conclusion

In this work, we propose MAPS a novel framework for Memory Augmented
Panoptic Segmentation. We present all aspects of our approach and justify differ-
ent design decisions regarding memory construction, memory incorporation and
training. Our memory design allows for the incorporation of associations between
context as well as diverse instances coming from the retrieved samples. We equip
the state-of-the-art Mask2Former architecture with our memory and delineate
an effective yet efficient way to transfer information from the memory features to
the segmentation query features. Through extensive experiments and ablations
we show improvements over existing baselines across multiple datasets. Our re-
sults demonstrate strong improvements as a result of our method, especially in
the low-data regime, and show promise in generalizing to more fine-grained tasks
as well. While applied to panoptic segmentation we feel our framework is general
and can be extended to other tasks.
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