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Abstract

Multimodal large language models have shown tremen-
dous advancements in parsing and reasoning about com-
plex scenes. However recent research has highlighted the
weak vision capabilities of these models, noting that CLIP-
based MLLMs fail to capture necessary vision details for
the LLM to answer questions accurately. We argue that a
fundamental weakness of current visual feature extraction
methods is that they are unaware of the prompt and there-
fore cannot focus on features that are best suited for a given
question. To address this, we conduct an analysis of the
strength of text-to-image diffusion models and their abil-
ity to learn effective representations for multi-modal under-
standing. To enable task-awareness, we propose passing the
prompt as input to the diffusion model. However, since these
models are trained to receive captions and not questions,
we design a simple instruction-tuning pipeline for efficiently
finetuning diffusion models to produce question-aware im-
age features. We highlight cases where these models ex-
cel, particularly in spatial and compositional understand-
ing. We evaluate our approach across a variety of both gen-
eral VQA and more specialized MLLM benchmarks to show
the strengths and weakness of text-to-image models on vi-
sual understanding tasks, as well as provide future steps for
further analysis.

1. Introduction
Recently, there has been significant progress towards devel-
oping multi-modal large language models (MLLMs) [5, 29,
32, 33, 51]. These models rely on pre-trained vision founda-
tion models for effective visual feature extraction and large
language models (LLMs) for their advanced understanding
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Figure 1. Text-to-image diffusion models such as Stable-
Diffusion have strong capabilities for vision-language under-
standing. Stable-Diffusion outperforms CLIP on the challeng-
ing MMVP-VLM image-text matching benchmark [52] (shown
on top), sorted by the in performance across various visual fac-
tors. Stable-Diffusion leverages its internal text-conditioned cross
attention maps (shown at the bottom).

and reasoning capabilities. To bridge the two modalities,
the design of MLLMs includes a connector mechanism that
projects visual information into a text space for the LLM.



The pairing of these two models results in enhanced multi-
modal understanding enabling the LLM to perform a variety
of vision-language tasks such as visual question answering,
image captioning, and instruction following.

Despite these advancements, these models still have
many pertinent shortcomings especially related to the qual-
ity of their visual representations. Specifically, [52] found
that CLIP [43], a commonly used vision encoder for
MLLMs, has difficulty encoding fine-grained visual details
necessary to distinguish two visually different images. This
can include visual information such as orientation, struc-
ture, and viewpoint. Furthermore, [22, 30] demonstrated
that these vision representations make MLLMs vulnerable
to visual hallucinations such as those regarding the pres-
ence of certain objects and their quantity. Follow-up works
have proposed alleviating this problem with two solutions –
ensembling multiple visual encoders [23, 24, 51, 52] or in-
corporating extra modalities [22, 36]. However, such strate-
gies are computationally expensive requiring more memory
and increasing latency. Moreover, the choice of which vi-
sion models to use becomes a separate optimization prob-
lem with a significantly large search space [59].

We motivate that another key limitation of current multi-
modal models is their reliance on fixed visual features for
question-answering. For instance, given a kitchen scene, in
order to answer a question about what food is in a particu-
lar bowl, the visual representations must adequately localize
the bowl and capture fine-grained semantic information in
this region. Such dynamic information processing is also
observed in how humans process visual scenes [53, 56]. As
a result, these models lack flexibility in extracting relevant
information for accurate question-answering. Some works
have attempted to address this by developing more sophis-
ticated modules to infuse text information into the visual
features [12, 29]. However, these approaches are inefficient
and only perform a form of late fusion where more granular
instruction-awareness is difficult to obtain.

In contrast to both of these issues, text-to-image diffu-
sion models have shown impressive performance in their
ability to create high-quality images that capture the fine-
grained semantics and compositions of the given text de-
scription [42, 44–46]. A fundamental component of these
models that enables such capabilities is the cross-attention
mechanism which modulates their internal activations with
the input text. Examining these attention maps has shown
that these generative models learn strong image-text corre-
spondence (an example shown in Figure 1, bottom). Further
works have showcased how harnessing the internal repre-
sentations of these models can be used to compete with
state-of-the-art models across various low and high-level vi-
sion discriminative tasks [11, 27, 41, 55].

Inspired by these works, we first explore how well off-
the-shelf diffusion features perform on multi-modal under-

standing tasks, namely image-text matching. We perform
zero-shot evaluations on various image-text benchmarks,
namely Winoground [50] and MMVP-VLM [52]. We fol-
low the protocol from He et al. [18] to extract image-text
scores from the diffusion model. The results are shown in
Table 1 and demonstrate that diffusion models are signif-
icantly better at capturing fine-grained details, spatial re-
lations, and compositional information compared to CLIP
and even more sophisticated CLIP variants (a comparison
is also shown in Figure 1, top).

Given the promising image-text correspondence in dif-
fusion features, we next aim to analyze how well dif-
fusion features can capture overall image information.
Specifically, we inspect model performance on the image-
captioning task. Here, we follow the pre-training protocol
of LLaVA [32] and train only an MLP projector layer to
bridge off-the-shelf diffusion features and the pre-trained
Vicuna-7B-v1.5 model [63]. We evaluate our models on the
COCO-captions dataset [10, 26]. Based on this analysis, we
propose leveraging text-to-image diffusion models as visual
encoders for the MLLM. We investigate the performance
of frozen representations first and find that while they are
competitive to CLIP, they suffer because question prompts
are out of distribution for the diffusion model trained with
captions. Additionally, we find that the diffusion model re-
quires more image-specific features for better grounding.
As such, we propose two changes. First, during pre-training
we design an implicit captioning module that leverages the
CLIP image encoder to encode global image features and a
trainable MLP to project them for the diffusion model. Then
during the second stage of training, we propose efficiently
fine-tuning the cross-attention layers of the diffusion model
to better process question information when extracting im-
age features. Together these result in a powerful image en-
coder capable for vision-centric multimodal understanding.

In summary, our contributions are as follows:
• We analyze the performance of off-the-shelf text-to-

image diffusion features for multi-modal understanding
tasks and find that they provide more granular image fea-
tures than CLIP.

• We introduce a new paradigm for instruction-aware mul-
timodal models by leveraging diffusion models as a task-
aware feature extractor that can take as input the question
to produce complete and relevant visual features.

• We showcase the potential of off-the-shelf text-to-image
diffusion features for image-captioning and find that they
aid in generating more complete and accurate captions.
We identify refinement capabilities where captions can
recurrently be improved over multiple passes.

• We perform comprehensive experiments on MLLM
benchmarks to showcase the the benefits and drawbacks
of our design compared to current state-of-the-art models,
especially on vision-centric datasets.
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Figure 2. Diffusion Pipelines We have two primary setups. (Left) For image-text matching, we treat the text-conditioned diffusion model
as a VLM, and perform the matching based on the cross attention maps. (Right) For captioning and question answering, given an input
image and a specific question or preliminary caption, we pass both to Stable Diffusion and extract intermediate features before projecting
them for the LLM. Image taken from [1].

2. Related Work
Vision Language Models Vision language modeling have
been a popular topic with foundational image-text align-
ment papers such as [43, 60]. Multimodal LLMs go one
step further and have taken the success of large scale pre-
trained LLMs and applied them to vision tasks [2, 12, 29,
54]. However, they typically require a large amount of pre
or post training to algin the vision and language tasks. More
recent methods like [9, 33, 64] show how visual instruction
can be done quickly and with low data while being compet-
itive with strong baselines [3, 29] across a wide variety of
tasks.

Numerous papers and benchmarks showcase the weak-
nesses of these methods including their tendency for hallu-
cination [14, 16, 21, 31, 48, 61] and general inability with
spatial reasoning tasks [15, 51, 52]. Multiple improvements
have been proposed such as increasing resolution [34, 37],
improving data mixtures [32], as well as mixing or swap-
ping with other encoders [20]. We show how there is still
work to be done on improving vision encoders and their
ability to be prompt-aware.
Combining Visual Features with Other Modalities Ad-
ditional modalities have been proven useful for language
tasks. [4, 39] show how a masking objective can connect
more modes than RGB to language. [17, 33, 35] show how
tool use alongside extra modalities can significantly expand
use cases. Papers such as [7, 22, 36] show how integrating
extra modalities such as depth and semantic segmentation
help improve results on topics such as counting and spa-
tial reasoning. Despite these additions, none of these mod-
els are aware of visual instruction input and therefore can-
not focus features that maximize performance for a single
prompt.
Diffusion Models for Discriminative Tasks There have
been multiple works that look at porting diffusion models

from generative tasks to discriminative tasks. The Diffu-
sion Classifier [28] shows how to rework a standard class-
conditional diffusion model into a discriminative classifier.
[41] identifies where and when in a diffusion U-Net pro-
vides the strongest discriminative features.

These discriminative features have been shown to be use-
ful for multiple tasks. For classification, [40] explores fea-
tures extraction for classification and show how diffusion
models are stronger than other generative models on dis-
criminative tasks. There has also been significant explo-
rations on using diffusion models as encoders for segmen-
tation tasks [25, 58]. Particularly [58] shows how diffu-
sion models have both strong open vocabulary and region-
level understanding by achieving SoTA performance us-
ing a frozen diffusion backbone. Finally [18] explains that
diffusion models can achieve state of the art on few-shot
image-text matching. Following a similar strategy to these
papers, we show how diffusion models can provide suffi-
ciently strong discriminative features for visual instruction
tuning.

3. Diffusion Preliminaries
Before delving deeper into the effectiveness of diffusion
features for multi-modal understanding, we first review the
underlying concepts of text-to-image diffusion models and
existing feature extraction strategies.

Diffusion Models. Diffusion models are a class of gener-
ative models that aim to learn a mapping between a nor-
mal distribution and the data distribution q(x0). First, noisy
samples are generated via an iterative forward noising pro-
cess. At time-step t ∈ [0, T ], a noised image xt is generated
as follows:

xt =
√
ātx0 + (

√
1− āt)ϵ (1)

where ϵ ∼ N (0, I) is noise randomly sampled from a Gaus-



Table 1. Performance of various CLIP based models on different visual patterns in MMVP-VLM benchmark. Symbols are used for
visual patterns due to space limit: ☼: Orientation and Direction, Û: Presence of Specific Features, L: State and Condition, �: Quantity
and Count, ,: Positional and Relational Context, h: Color and Appearance, Ô: Structural and Physical Characteristics, k: Texts, �:
Viewpoint and Perspective. (Formatting follows [52])

Model
Image
Size

Params
(M)

IN-1k
ZeroShot ☼ Û L � , h Ô k �

MMVP
Average

OpenAI ViT-L-14 [43] 2242 427.6 75.5 13.3 13.3 20.0 20.0 13.3 53.3 20.0 6.7 13.3 19.3
OpenAI ViT-L-14 [43] 3362 427.9 76.6 0.0 20.0 40.0 20.0 6.7 20.0 33.3 6.7 33.3 20.0
SigLIP ViT-SO-14 [62] 2242 877.4 82.0 26.7 20.0 53.3 40.0 20.0 66.7 40.0 20.0 53.3 37.8
SigLIP ViT-SO-14 [62] 3842 878.0 83.1 20.0 26.7 60.0 33.3 13.3 66.7 33.3 26.7 53.3 37.0
DFN ViT-H-14 [13] 2242 986.1 83.4 20.0 26.7 73.3 26.7 26.7 66.7 46.7 13.3 53.3 39.3
DFN ViT-H-14 [13] 3782 986.7 84.4 13.3 20.0 53.3 33.3 26.7 66.7 40.0 20.0 40.0 34.8
MetaCLIP ViT-L-14 [57] 2242 427.6 79.2 13.3 6.7 66.7 6.7 33.3 46.7 20.0 6.7 13.3 23.7
MetaCLIP ViT-H-14 [57] 2242 986.1 80.6 6.7 13.3 60.0 13.3 6.7 53.3 26.7 13.3 33.3 25.2
EVA01 ViT-g-14 [47] 2242 1136.4 78.5 6.7 26.7 40.0 6.7 13.3 66.7 13.3 13.3 20.0 23.0
EVA02 ViT-bigE-14+ [47] 2242 5044.9 82.0 13.3 20.0 66.7 26.7 26.7 66.7 26.7 20.0 33.3 33.3

SD-v2.1-base [45] 5122 865.9 - 31.1 33.3 35.6 20.0 33.3 46.7 33.3 33.3 44.4 34.6

sian distribution. Each time-step results in an increasing
amount noise such that samples from earlier time-steps are
cleaner than samples from later time-steps. The amount of
noise at each time-step is determined by {āt}Tt=1 which is a
pre-defined noise schedule.

A neural network ϵθ is then trained to reverse this process
by learning to predict ϵ given the noisy image xt and time-
step t. For image-generation tasks, this network is most
popularly uses a U-Net architecture. Thus, a trained net-
work can take pure noise as input starting at xT and iter-
atively predict ϵ to progressively generate cleaner samples
xT−1, xT−2, ..., x1 and finally x0, representing the original
data distribution. This is known as the reverse process.

For text-to-image diffusion models, ϵθ also takes a text
condition c which is encoded via a pre-trained text-encoder
T . Thus, the noise ϵ is predicted via the updated equation:

f = ϵθ(xt, t, T (c)) (2)

where T (c) is the encoded text description.

4. Can SD features match images and text?
In this section, we aim to understand whether features
from a frozen Stable-Diffusion model have stronger image-
understanding capabilities compared to CLIP features. To
perform such an analysis in a zero-shot manner, we focus
on a task that doesn’t require the need for a language model,
namely image-text matching. Given a set of images and text
prompts, the goal of the model is to identify an image-text
pair that is the most semantically aligned. We follow the
protocol from [18] to generate image-text scores.

Specifically, this approach proposes using intermediate
cross-attention maps between the image and text features
and applying LogSumExp pooling [6] to produce a scalar
value representing image-text alignment. This computation

is done across all layers of the model and across multiple
time-steps and the scores are then averaged to obtain the fi-
nal score. For this evaluation, we compare Stable Diffusion
v2.1-base [45] against CLIP-based models on two bench-
marks, namely Winoground [50] and MMVP-VLM [52].
Performing well on these datasets requires the model to
have strong understanding about both image semantics as
well as more fine-grained details such as attributes and spa-
tial reasoning.

The results as shown in Table 1 highlight the improved
performance of the diffusion model compared to CLIP
across all benchmarks. Furthermore, we observe that for
the MMVP-VLM benchmark, the Stable-Diffusion model
shows clear improvements in understanding orientation and
direction, presence of specific features, and viewpoint and
perspective patterns. Diffusion also far surpasses the other
models for matched based on textual cues in the images
themselves. We examine how different time-steps impact
performance in Table 2 and note that features extracted from
earlier time-steps result in better performance for more de-
tailed patterns such as presence of specific features, but
worse performance for color and appearance. Due to the
diversity of performance across time steps, we also com-
bine features from across a representative set of time steps
– t ∈ {189, 389, 589, 789, 989}, and find that this strikes
a good balance for decent performance across time steps.
We compute our results for this ensemble as an average of
3 trials.

To complement our findings from the MMVP-VLM
benchmark, we use Winoground to evaluate the diffusion
models’ ability to conduct compositional reasoning. This
is done through a task of image-text matching with pairs of
images that contain the same caption words, just in a dif-
ferent order. The original Winoground paper shows how



Table 2. Comparison of SD2.1 model across varying timesteps for MMVP-VLM Benchmark, using 512 × 512 images. For ‘Ensemble’
we use timesteps t ∈ {189, 389, 589, 789, 989}, and average results across 3 trials.

Model Details MMVP-Val Benchmark

Model Timesteps ☼ Û L � , h Ô k � Avg

SD-v2.1 89 0.00 13.33 20.00 13.33 40.00 33.33 26.67 26.67 46.67 24.44
SD-v2.1 189 20.00 13.33 26.67 6.67 26.67 20.00 20.00 33.33 20.00 20.74
SD-v2.1 289 33.33 26.67 26.67 26.67 33.33 40.00 40.00 33.33 13.33 30.37
SD-v2.1 389 33.33 26.67 33.33 20.00 13.33 26.67 40.00 20.00 33.33 27.41
SD-v2.1 489 20.00 20.00 40.00 20.00 20.00 46.67 40.00 13.33 13.33 25.93
SD-v2.1 589 20.00 33.33 53.33 26.67 33.33 33.33 20.00 33.33 20.00 30.37
SD-v2.1 689 13.33 20.00 13.33 13.33 33.33 40.00 26.67 13.33 46.67 24.44
SD-v2.1 789 26.67 13.33 33.33 13.33 40.00 46.67 40.00 40.00 13.33 29.63
SD-v2.1 889 13.33 33.33 33.33 46.67 40.00 60.00 33.33 26.67 26.67 34.81
SD-v2.1 989 46.67 0.00 26.67 13.33 40.00 66.67 20.00 20.00 33.33 29.63

SD-v2.1 Ensemble 31.1 ± 7.70 33.3 ± 6.67 35.6 ± 19.25 20.0 ± 6.67 33.3 ± 13.33 46.7 ± 11.55 33.3 ± 6.67 33.3 ± 13.33 44.4 ± 7.70 34.6 ± 2.38

Table 3. Comparison of different models on the Winoground benchmark.

Model Details Winoground Benchmark

Model Image Size Timesteps Text Image Group

OpenAI ViT-L-14 224 n/a 27.75 7.75 11.75
OpenAI ViT-L-14 336 n/a 28.50 8.25 11.25
SigLIP ViT-SO-14 224 n/a 11.75 1.25 6.50
SigLIP ViT-SO-14 384 n/a 17.50 4.25 11.00
DFN ViT-H-14 224 n/a 38.50 11.50 14.25
DFN ViT-H-14 378 n/a 38.50 13.25 15.25
MetaCLIP ViT-L-14 224 n/a 32.50 10.75 15.25
MetaCLIP ViT-H-14 224 n/a 34.25 11.00 15.25
EVA01 ViT-g-14 224 n/a 27.25 9.25 11.25
EVA02 ViT-bigE-14+ 224 n/a 32.00 10.50 13.50
Stable-Diffusion-v2.1-base 512 [189, 389, 589, 789, 989] 31.92 ± 2.65 14.17 ± 1.15 10.50 ± 1.09

popular models struggle for this type of reasoning [50].
Our results, in Table 3, show slight improvements when
comparing to strong CLIP baselines across text and image
matching, although we do not surpass more recent models
like DFN-CLIP [13] and EVA-CLIP [47]. For an ablation
demonstrating the impact of time steps and noise sampling
on stable diffusion performance, see the Appendix.

5. Can SD features describe an images?
Feature Extraction from Diffusion Models In this work,
we use Stable Diffusion as our text-to-image diffusion
model. Specifically, we use SDXL [42] as our base model
given its impressive generative capabilities. There have
been several explorations of how to best extract features
from these diffusion models for different discriminative
tasks [38, 49, 58]. These approaches generally perform a
single forward pass through the U-Net to extract relevant
image features. The two primary considerations for fea-
ture extraction are the choice of time-step and the choice of
layers from which to extract features. We follow the latest

literature [38] to choose layers for feature extraction and ex-
amine the choice of time-steps across various tasks to better
determine which time-step is most optimal.

Following the LLaVA [33], we leverage these features in
the pipeline shown in Figure 2 to generate captions for im-
ages. We focus our investigation on how the output captions
vary depending on how we treat the text condition. That is,
we experiment with various classifier-free guidance scales,
as well as with different text inputs to the diffusion model,
at both train and test time.

We examine model performance at both stages of LLaVA
training. Specifically, the first stage trains a lightweight
projection layer that is able to convert visual features into
a representation that the LLM understands (PT). We addi-
tionally investigate the fully-tuned setting where the projec-
tor layer and the LLM are jointly fine-tuned on instruction-
following data and use the LLaVA-Mix665k dataset [32]
(FT, full-tuning). It is important to note that this fully-tuned
version does not train with standard captioning setups (e.g.
COCO-Captions [10] and is instead trained on instruction-



Table 4. Comparison of models on the COCO-Captions Benchmark. 512×512 images for SDXL, 336×336 images for CLIP.

Model Details COCO-Captions Benchmark

Model Train Mode Val Mode ROUGE-L CIDEr B@4 SPICE

Stable-Diffusion-XL-base (PT) No Captions No Captions 37.11 25.80 10.90 15.65
Stable-Diffusion-XL-base (PT) No Captions GT Captions 37.33 25.92 11.02 15.72
Stable-Diffusion-XL-base (PT) CFG=1.5 No Captions 31.28 21.93 8.06 11.72
Stable-Diffusion-XL-base (PT) CFG=1.5 Pseudo-Captions 31.39 20.25 7.86 12.40
Stable-Diffusion-XL-base (PT) CFG=1.5 GT Captions 46.97 59.16 19.63 21.66

PT-LLaVA No Captions No Captions 38.61 37.25 11.52 20.58
Stable-Diffusion-XL-base (PT) CFG=1.5 PT-LLaVA-Captions 38.89 33.98 12.58 18.91
Stable-Diffusion-XL-base (PT) CFG=1.5 w/ 30% caption dropout PT-LLaVA-Captions w/ CFG=1.5 38.89 32.42 12.48 19.02
Stable-Diffusion-XL-base (FT) CFG=1.5 w/ 30% caption dropout PT-LLaVA-Captions w/ CFG=1 50.45 78.28 24.95 21.87

FT-LLaVA No Captions No Captions 52.28 87.26 27.64 23.71
Stable-Diffusion-XL-base (PT) CFG=1.5 FT-LLaVA-Captions 45.62 55.18 17.86 20.50
Stable-Diffusion-XL-base (PT) CFG=1.5 w/ 30% caption dropout FT-LLaVA-Captions w/ CFG=1.5 44.55 49.17 16.79 20.25
Stable-Diffusion-XL-base (FT) CFG=1.5 w/ 30% caption dropout FT-LLaVA Captions w/ CFG=1.5 50.87 80.63 25.61 22.26

following data and then evaluated for captioning.
Table 4 shows our main results. While the best results are

with the fine-tuned Llava with CLIP feature extractor (FT-
LLaVA), we highlight some interesting findings for stable
diffusion.
Diffusion Models as Vision Backbones First, stable dif-
fusion features are more informative for captioning when
some text is provided. In fact, even when we train the pro-
jection layer with no text inputs to stable diffusion (Train
Mode “No Captions”), the captioning results are still better
if we give some captions at test time (Val Mode “GT Cap-
tions”). Obviously “GT Captions” is not a fair evaluation
setting, since SDXL receives the captioning targets as its
input. However, is meant primarily as an oracle, to show
the potential positive impact of text.

Second, stable diffusion is capable of guiding LLaVA to
improve upon its initial text inputs. This can be seen when
passing the PT-LLaVA captions to SDXL, as with the Val
Mode “PT-LLaVA-Captions” both with and without CFG.
In fact, when we finetune the SDXL, we get results that
are much more competitive with the “FT-LLaVA.” How-
ever, as the “FT-LLaVA-Captions” Val Mode results show,
“FF-LLaVA” itself still acts as a sort of upper bound, even
when we finetune the LLM for the SDXL-backbone VLLM
as well.

Third, from an ablation in Table 5, we find the ideal CFG
for a fair evaluation setting is on the lower end (1.5). We
try to further understand the impact of CFG qualitative by
computing PCA maps on SDXL features in Figure 3. The
text-conditioned features are generally more semantically
structured than the unconditional features. When we per-
form the CFG computation (weighted subtraction of und-
coditional from text-conditioned features), these semantics
are further emphasized. However, the ideal CFG for the ora-
cle setting (“GT Captions”) is the opposite (4.5 is ideal, but

Table 5. Comparison of models on the COCO-Captions Bench-
mark. 512 × 512 images for SDXL, exploration of impact of
classifier-free guidance (CFG), training only the projection mod-
ule with ground truth captions and the indicated CFG.

Model Details COCO-Captions Benchmark

Model CFG Val Mode ROUGE-L CIDEr B@4 SPICE

SDXL 1.5 PT-LLaVA-Captions 38.89 33.98 12.58 18.91
SDXL 1.5 GT Captions 46.97 59.16 19.63 21.66
SDXL 4.5 PT-LLaVA-Captions 36.59 28.84 9.91 19.02
SDXL 4.5 GT Captions 52.67 76.05 24.65 24.44
SDXL 7.0 PT-LLaVA-Captions 34.07 21.63 8.28 18.18
SDXL 7.0 GT Captions 49.38 62.00 20.22 23.41

even 7.0 is better than 1.5). Since the higher CFG should
further align the features to the text inputs, the inverse trend
indicated that the text might be directly “leaking” from the
SDXL inputs to the LLaVA outputs, particularly with higher
CFG.

Fourth, we investigate this leaking phenomenon directly
to find, in Table 6, that the captions do in fact leak when us-
ing CFG. We set up an experiment where the SDXL-based
MLLM is trained as normal (indicated in “Train Mode”).
However, for the evaluation, the model is passed pairs of
images, and captions that do not match those images. In-
stead of computing captioning metrics for the matching cap-
tions, we compute metrics with the mismatching captions
that were used as input to the SDXL. If there is no leaking,
the models should perform poorly, since we are evaluating
them against text that does not match the images. On the
other hand, if there is leaking they should perform well. As
the Table 6 shows, while without CFG there is very limited
leaking, this completely changes for higher values of CFG.

Finally, we find that by training with some caption
dropout (Train Mode “30% caption dropout”), we not only
get the best results shown in Table 4, we also mitigate the
leaking in Table 6. With dropout, the model is as bad as
no CFG for the “Mismatched” captioning (meaning it does



Table 6. Comparison of models on the COCO-Captions Bench-
mark. 512 × 512 images for SDXL, exploration of the impact of
classifier-free guidance (CFG) on leaking of text from the stable
diffusion inputs to the LLM outputs. To accomplish this, we eval-
uate in a “Mismatched” setting, where we sample a given image
and an unrelated caption for input to the SDXL. We use features
from SDXL to compute captions. We then compute captioning
metrics relative to the unrelated input captions. If the metrics are
“good,” this means the SDXL leaks text to the point where the
LLM hallucinates content unrelated to the image.

Model Details COCO-Captions Benchmark

Model Train Mode ROUGE-L CIDEr B@4 SPICE

SDXL GT Captions, No CFG 29.25 7.32 4.15 4.64
SDXL CFG=1.5 36.03 21.39 8.99 9.78
SDXL CFG=1.5 w/ 30% caption dropout 30.96 10.39 5.30 6.04
SDXL CFG=4.5 49.58 63.48 20.32 21.43

not leak severely), but on par with CFG=1.5 in the standard
setting. Thus, the dropout training clearly helps the model
learn a better balance between extracting image features,
and simply learning to decode the text information present
in SDXL features. This also somewhat aligns with how the
SDXL model is trained with CFG in the first place, some-
times masking the caption for better performance.

6. Can SD features answer hard questions?

6.1. Model Design
In this section, we endeavor to understand if text-to-image
diffusion models can extend beyond just describing an im-
age, but also be leveraged as a tool for accurate instruction-
following. Specifically, we start with our existing pipeline
from Section 5 and make one fundamental change. Rather
than feeding captions as the text-prompt for the diffusion
model, we instead pass instructions as shown in Fig 2.
Through this, we exploit the powerful image-text corre-
spondence in the network’s cross-attention layers to effec-
tively focus on instruction-specific regions and features.

However, this network is not initially trained to take in-
structions as input and therefore alignment is necessary.
Furthermore, during training, multiple instructions are of-
ten stacked together in the same conversation. This results
in some instructions exceeding the token length of the dif-
fusion text-encoder. For the purpose of our analysis, we
propose two simple strategies to address each of these is-
sues during the second-stage of LLaVA training (supervised
fine-tuning, SFT).

First, we propose a random question-sampling strategy.
Namely, given a conversation of questions, we randomly
choose a question to feed in as a prompt to the network. We
additionally truncate all questions to match the token-length
constraint of the diffusion encoder. This design requires the
network to have learned how to deal with imperfect prompts
during pre-training and as such we experiment with three
specific strategies: passing no-captions (No-Cap.), pass-

Unconditional Features

Text-Conditioned Features

Text-Conditioned - Unconditional

Figure 3. PCA maps of Unconditional and Text-Conditional Fea-
tures. Applying CFG leads to a filtering effect on the features,
where specific semantics are emphasized.

ing the ground-truth captions (GT-Cap.), and passing noisy
ground-truth captions (Noisy GT-Cap.). The latter is done
via random deletion of words in the caption (e.g. 30%).

Second, to enable improved alignment of the diffusion
model to instructions as text-prompts, we propose adding
LoRA [19] weights to the cross-attention layers. These
layers are then updated during SFT and improve the dif-
fusion model’s robustness to noisy questions. Motivated
by our previous analysis, we design an architecture to
extract a combination of both conditional and uncondi-
tional features. Namely, we build SDXL-LLaVA-c which
concatenates both unconditional and caption/instruction-
conditioned diffusion features prior to the projection layer.

6.2. Results
We evaluate our models on a diverse set of benchmarks
which test the model’s ability for both instruction-following
as well as visual perception. We use the LLaVA-Bench-In-
the-Wild dataset for instruction-understanding, which con-
sists of 24 images and 60 questions. This benchmark con-
tains highly out of distribution images and asks the MLLM
to answer questions that require deep world knowledge. To
evaluate more fundamental visual capabilities, we use two
benchmarks, MMVP [52], BLINK [15]. MMVP tests the
model’s spatial reasoning abilities and asks questions about
orientation, color, etc. BLINK builds upon this by testing
the model’s ability to understand visual prompts and rea-
son about multiple images. This benchmark covers vari-
ous image properties such as semantic and functional cor-
respondence, relative depth, etc. It is important to note that
while LLaVA-Bench relies on the LLM to generate text, the
vision-centric benchmarks are multiple-choice.

We first discuss the overall results as shown in Table 7.
We compare with two LLaVA models, namely one trained
with a frozen CLIP [43] backbone and one trained with a
frozen DINO [8] backbone. For LLaVA-Bench, we ob-



Table 7. Comparison for instruction-following and vision-centric benchmarks for different training and evaluation strategies. † indicates
SDXL models that received both the instruction as well as a pseudo-GT caption generated from a pre-trained CLIP-LLaVA model during
evaluation. We train SDXL-based models keeping the SDXL vision-encoder frozen (SDXL) as well as with LoRA-based fine-tuning
(SDXL-FT). See Sec 6 for more details.

Model Details LLaVA-Bench-In-the-Wild Vision-Centric Benchmarks

Model Backbone PT Mode SFT Mode Complex Conv Detail All MMVP BLINK

CLIP-LLaVA-v1.5-7B ViT-L14-336 N/A N/A 75.4 58.0 60.2 66.5 24.7 36.60
DINO-LLaVA-v1.5-7B ViT-L14-224 N/A N/A 62.6 37.3 38.3 48.9 22.7 34.66

SDXL-LLaVA-v1.5-7B SDXL No-Cap. Instr. 52.0 35.0 29.8 41.4 22.7 35.9
SDXL-LLaVA-v1.5-7B† SDXL No-Cap. Instr. 54.3 33.8 34.4 43.1 22.7 -
SDXL-LLaVA-v1.5-7B SDXL GT-Cap. Instr. 54.9 33.1 22.9 40.4 17.3 36.42
SDXL-LLaVA-v1.5-7B† SDXL GT-Cap. Instr. 55.6 39.3 30.3 44.4 19.3 -

SDXL-LLaVA-v1.5-7B SDXL-FT No-Cap. Instr. 50.4 38.6 20.7 39.3 22.0 36.63
SDXL-LLaVA-v1.5-7B† SDXL-FT No-Cap. Instr. 57.2 30.9 35.5 43.9 22.0 -
SDXL-LLaVA-v1.5-7B SDXL-FT GT-Cap. Instr. 49.4 37 31.4 41.2 22.0 36.12
SDXL-LLaVA-v1.5-7B† SDXL-FT GT-Cap. Instr. 58.8 36.8 34.5 46.2 22.7 -
SDXL-LLaVA-v1.5-7B-c SDXL-FT Noisy GT-Cap. Instr. 56.8 34.8 21.1 41.2 21.3 36.50
SDXL-LLaVA-v1.5-7B-c† SDXL-FT Noisy GT-Cap. Instr. 62.9 37.6 29.5 46.9 21.3 -

Table 8. Comparison of models on the BLINK-Val Benchmark. The table shows the performance across various tasks and modalities.
We perform partial finetuning (PT) of SDXL-based models either using no captions (No-Cap.), ground truth captions (GT-Cap.), or noisy
ground truth captions (Noisy GT-Cap.). We also do instruction (Instr.) finetuning (SFT) for all SDXL models.

Model Details BLINK-Val Benchmark

Model Backbone PT Mode SFT Sim. Count. Depth Jigsaw Art Func. Corr. Sem. Corr. Spat. Rel. Obj. Loc. Vis. Corr. Multi-View Refl. Forens. IQ

CLIP-LLaVA-v1.5-7B ViT-L14-336 N/A N/A 47.41 45.00 52.42 12.00 41.03 16.26 31.65 64.84 50.00 27.33 43.61 37.31 23.48 20.00

DINO-LLaVA-v1.5- ViT-L14-224 N/A N/A 47.41 43.33 50 2.67 32.48 22.31 20.86 66.43 54.92 28.49 48.87 29.1 20.45 18

SDXL-LLaVA-v1.5-7B SDXL No-Cap. Instr. 47.41 40 51.61 12.67 35.04 20 20.86 62.94 57.38 29.65 43.61 35.07 21.21 25.33

SDXL-LLaVA-v1.5-7B SDXL GT-Cap. Instr. 48.15 39.17 51.61 5.33 42.74 23.85 20.86 64.34 53.28 25 54.89 36.57 22.73 21.33

SDXL-LLaVA-v1.5-7B SDXL-FT No-Cap. Instr. 47.41 37.5 48.39 8.67 48.72 24.62 22.3 60.84 56.56 28.49 44.36 38.06 24.24 22.67

SDXL-LLaVA-v1.5-7B SDXL-FT GT-Cap. Instr. 47.41 40.83 50 6.67 43.59 24.62 25.18 65.03 53.28 29.01 41.35 34.33 19.7 24.67
SDXL-LLaVA-v1.5-7B-c SDXL-FT Noisy GT-Cap. Instr. 46.67 38.33 52.42 4.67 39.32 22.31 32.37 62.94 56.56 30.23 42.11 40.3 22.73 20

serve that the CLIP-based model is the most performant
and that DINO and SDXL-based models have almost a 20
point degradation in performance. We observe that adding
pseudo-captions during evaluation (as indicated by †) does
noticeably improve performance with a 1.7pt improvement
for SDXL-LLaVA trained without captions and a 4pt im-
provement for SDXL-LLaVA trained with captions. Gen-
erally, we see that pre-training with ground-truth captions
(GT-Cap.) prior to SFT with instructions leads to better per-
formance on LLaVA-Bench. Applying LoRA during SFT
leads to mixed results with a small drop for SDXL-LLaVA
trained with no captions and a minor bump for SDXL-
LLaVA trained with GT captions. Providing these models
with pseudo-captions during evaluation also demonstrates
improved performance. This makes sense – captions pro-
vide the diffusion model with improved grounding for the
scene, which is needed for answering complex questions.

For the MMVP benchmark, we observe that while CLIP-
LLaVA has a slight advantage, DINO and SDXL-based
models all achieve competitive performance. Most notably,
it can be seen that adding text during evaluation does not
have significant performance boosts. This could be due

to the simplicity of the images in this benchmark. Finally
for the BLINK benchmark, we find that all models achieve
roughly the same performance at around 34-36% accuracy.
To better understand more granular performance benefits of
our model, we examine model performance on each cate-
gory of the BLINK benchmark as shown in Table 8.

Here, we observe key trends where SDXL-based models
improve over CLIP and DINO-based models. Specifically,
SDXL-LLaVA models consistently improve over CLIP on
functional correspondence where the goal is to identify
points that are functionally similar over a set of objects.
Another area where we see clear improvements with SDXL
over CLIP is object localization, as each model is consis-
tently +3 points over the CLIP baseline.

7. Conclusion
In this work, we analyze the effectiveness of diffusion fea-
tures for multimodal understanding. We identify that dif-
fusion models are able to extract features that are well-
aligned to text and can capture both high-level semantics
and more fine-grained details. We then propose leveraging
such models as task-aware feature extractors and find that



they are competitive with or exceed CLIP on vision-centric
benchmarks, but degrade in performance on more general-
purpose question-answering. To address this, we propose
several text-prompting strategies that can substantively im-
prove model performance across various tasks. Finally, we
show that minimal fine-tuning can close the gap further be-
tween CLIP and SDXL-based models and improve overall
multimodal reasoning.
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